III B.Tech - II Semester - Regular Examinations - May 2017

DIGITAL COMMUNICATIONS (ELECTRONICS \& COMMUNICATION ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks
$11 \mathrm{x} 2=22 \mathrm{M}$
1.
a) Give the expression for aliasing error and the bound for aliasing error.
b) The signal to quantization noise ratio in a PCM system depends on what criteria?
c) How is eye pattern obtained on the CRO?
d) Why do we go for Gram-Schmidt Orthogonalization procedure?
e) What is the value of maximum signal to noise ratio of the matched filter? When it becomes maximum?
f) Write a short note on Information, Entropy and Mutual Information?
g) What are the error detection and correction capabilities of hamming codes?
h) What is BCH code?
i) Compare between code tree and trellis diagram.
j) State the balance property of random binary sequence.
k) What are the three codes used for the anti jamming application?
PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Explain the Operation of DPCM techniques. List the advantages and disadvantages of it.
b) Explain the techniques: Quantization and encoding in PCM system.

8 M
3. a) What are different digital modulation techniques available? Compare them with regard to the probability error. 8 M
b) Draw the block diagram of DPSK modulator and explain how synchronization Problem is avoided for its detection.
4. a) Apply Shannon fano coding for the 5 messages with probabilities $0.4,0.15,0.15,0.15,0.15$ and find the coding efficiency.
b) What is binary symmetric channel and derive expression for its capacity.
5. a) Draw the trellis diagram of a Convolutional code of code rate $\mathrm{r}=1 / 2$ and Constraint length of $\mathrm{K}=3$ starting from the state table and state diagram for an encoder which is commonly used.
b) Explain the sequential decoding for convolutional code in detail.
6. a) Explain how PN sequences are generated. What are maximal-length sequences? What are their properties and why are they preferred? 8 M
b) With the help of a neat block diagram, explain the working of a DS spread spectrum based CDMA system. 8 M

